Open Access Publications of the European Geosciences Union (EGU)

with examples from

Climate of the Past
Facts, Innovative Approaches, Dissemination

Denis-Didier Rousseau
(denis.rousseau@lmd.ens.fr)

November 2013
The European Geosciences Union

- Merger of the European Geophysical Society (EGS) and the European Union of Geosciences (EUG), founded in 2002
- Dynamic, innovative, and interdisciplinary learned association
- Devoted to the promotion of the sciences of the Earth and its environment and of planetary and space sciences

Facts

- 11,167 Participants from 95 countries in its 2013 General Assembly (largest European Geosciences conference, 2nd in the world)
- 5,550 Paid-up Members (2011), and +11,000 (stand 20.10.2011) EGU members including complementary memberships
- 22 Divisions
- 15 Open Access Journals

Signatory of the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities 2003
Mission Statement for Publications

“Dedicated to the pursuit of excellence and free and universal accessibility of scientific publications in all areas of geosciences and planetary and solar system sciences for the benefit of the scientists worldwide.”

Publication Strategy

- Rigorous Peer-Review – at least 2 independent referees
- Immediate Open Access to all articles of all journals
- Page charge waiver for the first 3 years of a journal
- Moderate page charges for authors afterwards (*)
- No extra charges for color illustrations etc.
- Author copyright under the Creative Commons License
we developed our own internet-based software for the meeting and for the editorial support offices, respectively. By 2000 we were also able to typeset, to layout and to print our own journals in different styles and manners.

At the end of the 1990s three major concepts were discussed regarding the advancements in the publication of our scientific journals:

1. While all publications were still in the classical style and on paper, we experienced to extend our software to include a publication of all articles also directly on the internet – even in an easy-to-read, one-column, landscape format – to be downloaded directly on the PC. And right from the beginning it was argued that the internet must be free of charge for reading and downloading of manuscripts.

2. In parallel it was suggested that the classical way of publishing final articles hard and fast should be replaced by an open forum of outright discussions in which everyone should be able to take part.

3. Finally, it was proposed that the classical blind and anonymous way of review – occasionally even by the same pre-selected yet anonymous referees – should be replaced by an open and eponymous review procedure, even by including the public.

In 2000 several meetings took place at the Max Planck Institute for Chemistry in Mainz, Germany, by invitation of Paul Crutzen and Ulrich Pöschl together with...
Publication Facts

- 136,899 Published pages in 2012 (95,886 in 2010)
- 5,316 Published papers in 2012 (3,085 in 2010)
- 15458 Authors from 113 countries in 2012 (76 in 2010)
- 752 Editors in 2013

All journals are published by Copernicus Publications, a member of the not-for-profit organization Copernicus Gesellschaft, on behalf of the European Geosciences Union
Publication Facts: published papers 2001-2012
Innovative Approaches

Public Peer-Review & Interactive Public Discussion

- Rapid access peer-review → publication as discussion paper
- Interactive public discussion: published referee comments, author comments & comments of the scientific community
- Paper revision & final acceptance → publication as final revised paper

Designed to

- foster scientific discussion;
- maximize the effectiveness and transparency of scientific quality assurance;
- enable rapid publication of new scientific results;
- make scientific publications freely accessible.
1. Submission
2. Access Peer-Review
3. Technical Corrections
4. Publication as D-paper
5. Comments
6. Revision
7. Revised Submission
8. Peer-Review Completion
9. Final Revised Publication
1. Submission
2. Access Peer-Review
3. Technical Corrections
4. Publication as D-paper
5. Comments
6. Revision
7. Revised Submission
8. Peer-Review Completion
9. Final Revised Publication

1st Stage (Discussions Journal)

2nd Stage (Journal)

Scientific Community

Referees

Discussion Paper

Referee Comments

Author Comments

Short Comments

Final Revised Paper

Author

Editor

Referees

5

6

7

8

9

1

2

3

4
Journals & Subject Areas (IF 2012)

Annales Geophysicae
Sun-Earth system, including the science of Space Weather, the Solar-Terrestrial plasma physics, and the Earth's atmosphere and oceans.
ISI Impact Factor 1.518

Atmospheric Chemistry & Physics (incl. D-journal)
Earth's atmosphere and the underlying chemical and physical processes.
ISI Impact Factor 5.510

Atmospheric Measurement Techniques (AMT) (incl. D-journal)
All aspects of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth's atmosphere. **ISI Impact Factor 3.305**

Biogeosciences (incl. D-journal)
Interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. **ISI Impact Factor 3.754**
Journals & Subject Areas

Climate of the Past (incl. D-journal)
The climate history covering both observational and modelling studies of all periods of Earth history up to and including the instrumental period.

ISI Impact Factor 3.556

Earth System Dynamics (incl. D-journal)
Publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change.

Geoscientific Model Development (GMD) (incl. D-journal)
All description, development and benchmarking of numerical models of the Earth System and its components.

ISI Impact Factor 5.030

Geoscientific Instrumentation, Methods and Data Systems (GI) (incl. D-journal)
For swift publication of original articles and short communications in the area of geoscientific instruments.
Hydrology and Earth System Sciences (incl. D-journal)
Hydrology, placed within a holistic Earth System Science context.
ISI Impact Factor 3.587

Natural Hazards and Earth System Sciences
Interdisciplinary journal for the publication of original research concerning natural hazards.
ISI Impact Factor 1.751

Nonlinear Processes in Geophysics
Research furthering knowledge on nonlinear processes in all branches of Earth, planetary and solar system sciences.
ISI Impact Factor 1.409

Ocean Science (incl. D-journal)
All aspects of ocean science, experimental, theoretical and laboratory.
ISI Impact Factor 2.164
Solid Earth (incl. D-journal)
Multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales.
ISI Impact Factor 1.371

The Cryosphere (TC) (incl. D-journal)
All aspects of frozen water and ground on Earth and on other planetary bodies.
ISI Impact Factor 3.770

Earth Surface Dynamics (incl. D-journal)
International scientific journal dedicated to the publication and discussion of high quality research on the physical, chemical and biological processes shaping Earth's surface and their interactions on all scales.
EGU policy is to have at least every of its divisions developing a dedicated on-line and open access journal. So more journals to come, considering the number and the fields of EGU scientific divisions.
Copernicus Publications and the EGU feel responsible to

• enable a wide dissemination of the articles through scientific databases, libraries or search engines;

• enable an availability of the articles in the future independent from their own sources but in cooperation with strong partners (MPS, INSU-CNRS, Helmholtz Association, Göttingen State and University Library).

Therefore, the EGU journals are at least indexed but also long-term archived in the following categories:

• ISI – Thomson Scientific

• Copyright Libraries

• e-Archives

• Searchable Databases

• Scientific Online Search Engines
ISI – Thomson Scientific

- Science Citation Index Expanded (Web of Science)
- Current Contents / Physical, Chemical & Earth Sciences
- Current Contents / Agriculture, Biology & Environmental Sciences

Supply: Digital (since September 2006)

Online Information:
- Bibliographic data (article level)
- Abstract
- References (forwards and backwards)
Copyright Libraries

- Bodleian Library (UK)
- Deutsche Nationalbibliothek (German National Library)
- Library of Congress (USA)
- Niedersächsische Landesbibliothek (Library of the state of Lower Saxony in Germany)

Supply: Analog

Online Information:

- Bibliographic data
e-Archives

- Die Deutsche Digitale Bibliothek (German Digital Library)
- J-Gate
- Portico
- CLOCKSS
- HAL (*HAL-INSU)

Supply: Digital

Online Information:
- Bibliographic data (article level)
- Abstract
- Full text PDF on their own server
Searchable Databases

- ADS – NASA Astrophysics Data System
- CAS – Chemical Abstract Service → CA+, SciFinder, STN
- CSA – Cambridge Scientific Abstracts → Aquatic Science and Fisheries Abstracts (ASFA)
- DOAJ – Directory of Open Access Journals
- GeoArchive – EarthScienceWise
- GeoBase – Elsevier
- GeoRef – American Geological Institute (AGI)
- Scopus – Elsevier
- J-Gate – Inform India
New in 2013: article metrics

Article-level metrics

Article-level metrics (ALMs) aim to quantify the usage (downloads, views), impact (citations), saves (bookmarks), and discussion (social media) of scholarly work at the article level. ALMs comprise a set of easy-to-understand real-time impact indicators that track how an article is read, discussed, or cited. The usage is collected from individual accesses to the Copernicus library servers (robot traffic is filtered), the impact is counted from CrossRef and Google Scholar citations, the saves are counted from CiteULike and Mendeley, and the discussions are represented by Research Blogging, Facebook, ScienceSeeker, Nature Blogs, Wikipedia, Wordpress.com, Reddit, and Google Blogs.

In comparison to the traditional way of measuring impact at the journal level, ALMs offer a more informative way of assessing the overall influence and reach of the articles themselves.

Article-level metrics are available for all articles of journals published by Copernicus Publications. Authors can stay up to date with their published articles and share the information about the impact of their published work with peers, funding institutions, research bodies, and the overall scientific community.

Thus, ALMs have value for authors, readers, libraries, institutions, and funders:

- Authors can track their research, discover new research in their field, and find influential collaborators;
- Readers have the tools to browse and navigate the journal site;
- Libraries have the information they need to serve authors and readers;
- Institutions have effective tools to evaluate researchers with regard to hiring, tenure appointment, and promotion;
- Funders can use ALMs to gain a comprehensive overview of a researcher’s influence.

For more detailed information about ALMs please see http://www.sparc.ari.org/resource/sparc-article-level-metrics-primer.

i. http://article-level-metrics.plos.org/researchers
v. http://article-level-metrics.plos.org/institutions
Aims and Scope

Climate of the Past (CP) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on the climate history of the Earth.

The main subject areas are:

- reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;

- development and validation of new proxies, improvements of the precision and accuracy of proxy data;

- theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space and time scales;

- simulation of past climate and model-based interpretation of palaeo climate data for a better understanding of present and future climate variability and climate change.
European Geosciences Union

CP Submission

Climate of the Past
An Interactive Open Access Journal of the European Geosciences Union

Manuscript Submission

First Steps
Before the actual submission of a manuscript to the Editorial Support for peer-review, you are kindly requested:

- to study the General Terms and the Service Charges for this journal,
- to study the Manuscript Preparation for this journal,
- to agree and obey the General Obligations for Authors,
- to register the manuscript in order to receive a link for uploading the manuscript files into the Copernicus Office Editor. The registration also defines the manuscript subject areas and index terms as the basis for the editor assignment.

CP Manuscript Registration

Dear Dr. Rousseau,
Please click on here for your personal access to the Copernicus Office.

File Submission for Review Process
After the manuscript registration, you are kindly asked to upload those files which are necessary for the peer-review process. These are at least:

- The abstract (title, authors, affiliations, abstract text, sample *) as *.pdf file.

- [Other files required for review process]
Manuscript registration

Manuscript Registration

Title: This is a new paper submitted to CP

Short Title:

Companion Paper(s):

<table>
<thead>
<tr>
<th>Authors*</th>
<th>Initials</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DD</td>
<td>Rousseau</td>
</tr>
</tbody>
</table>

Is the first Author affiliated with one of the following institutions?

- CNRS/INSU

Affiliation: Laboratoire de météorologie dynamique (LMD) - UMR8539

Contact Author: Dr. Denis-Didier Rousseau, denis.rouseau@lmd.ens.fr,

Second Contact Author:

- First Name:
- Last Name:
- Email:

Always send a copy of any email to the Second Contact Author: ☐
Call for editor

Original destination: denis.rousseau@lmd.ens.fr
Original message:
Dear Dr. Rousseau,

We are pleased to inform you about a new submission for publication in Climate of the Past (CP). Your support would be very much appreciated and we kindly ask you to act as the Editor for the following manuscript:

Title: Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature?
Author(s): B. Meyssignac, D. Salas y Melia, M. Becker, W. Llawel, and A. Cazenave
MS No.: cp-2011-152
MS Type: Research Article
Iteration: Initial Submission

Further information including the abstract of the manuscript and the form for your reply are available at:
http://editor.copernicus.org/CP/editor_call/cp-2011-152

To log in, please use your Copernicus Office User ID XXXX

In any case, we would be grateful for your decision until 27 Dec 2011. Please note that the Editor call is organized on a "First come - First Served" basis.

Detailed information on the review process can be found at: http://www.climate-of-the-past.net/review/process_and_interactive_public_discussion.html

Thank you very much in advance for your cooperation! In case any questions arise, please contact me!

Kind regards,

Natascha Töpfer
Copernicus Publications
Editorial Support
editorial@copernicus.org

on behalf of the CP Editorial Board
Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales

L. Zhao, J. Xu, and A. M. Powell Jr.

Clim. Past Discuss., 9, 6161-6178, 2013

Abstract Discussion Paper (PDF, 2000 KB) Supplement (718 KB)

Interactive Discussion (Open, 0 Comments) Manuscript under review for CP

Late Glacial-Holocene climatic transition record at the Argentinian Andean piedmont between 33°–34° S

A. E. Mehl and M. A. Zárate

Clim. Past Discuss., 9, 6125-6160, 2013

Abstract Discussion Paper (PDF, 8465 KB) Interactive Discussion (Open, 0 Comments)

Manuscript under review for CP Special Issue

A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually-banded coral archives

Clim. Past Discuss., 9, 6077-6123, 2013

Abstract Discussion Paper (PDF, 2066 KB) Interactive Discussion (Open, 0 Comments)

Manuscript under review for CP

What controls the isotopic composition of Greenland surface snow?

Clim. Past Discuss., 9, 6035-6076, 2013

Abstract Discussion Paper (PDF, 1824 KB) Supplement (365 KB)

Interactive Discussion (Open, 0 Comments) Manuscript under review for CP
<table>
<thead>
<tr>
<th>Year</th>
<th>Special Issues</th>
</tr>
</thead>
</table>
| 2013 | "The Past: A Compass for Future Earth - PAGES Young Scientists Meeting 2013"
"Western Pacific paleoceanography - an ocean history perspective on climate variability at orbital to centennial scales"
Eds. L. Beaufort, M.-T. Chen, M. Mohladi, and M. Yamamoto
"The changing Arctic and Subarctic environment: proxy- and model-based reconstructions of Holocene climate variability in the northern North Atlantic"
Eds. J. Giraudon, H. Renssen, J. Knet, and D.-D. Rousseu |
| 2012 | "International Partnerships in Ice Core Sciences (IPICS): 2012 First Open Science Conference (CPD/TCD Inter-Journal SI)"
"Past environmental and climatic stress during modern human's dispersal"
Eds. F. Viehberg, F. Schobitz, K. Reicherter, J. M. Le Tesnorer, and D.-D. Rousseau
"Progress in paleoclimate modelling"
"Holocene changes in environment and climate in the central Mediterranean as reflected by lake and marine records"
"Initial results from lake EFgygty, western Siberia: first time-continuous Pliocene-Pleistocene terrestrial record from the Arctic"
"Integrated analysis of interglacial climate dynamics"
"Advances in understanding and applying speleothem climate proxies"
Eds. A. Mangini, C. Spotti, S. Fria, G. Lohmann, E. Wolff, and D. Fleitmann |
| 2011 | "AIICC2012: a new ice core chronology" |
Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales

L. Zhao, J. Xu, and A. M. Powell Jr.

Interactive Discussion

Status: Open (until 27 Dec 2013)

AC: Author Comment | RC: Referee Comment | SC: Short Comment | EC: Editor Comment

[Post a Comment] [Subscribe to Comment Alert] - Printer-friendly Version - Supplement

Clim. Past Discuss., 9, 6161-6178, 2013
www.clim-past-discuss.net/9/6161/2013/
doi:10.5194/cpd-9-6161-2013
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales

L. Zhao, J. Xu, and A. M. Powell Jr.

Viewed
Cited
Saved
Discussed

Latest update: 01 Nov 2013 15:34
Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales

L. Zhao, J. Xu, and A. M. Powell Jr.

Related Authors

Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models [21 Oct 2013]
J. Xu, A. M. Powell Jr., and L. Zhao
Geosci. Model Dev., 6, 1705-1714, 2013

Related Subject Area

Cited Articles
Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales

L. Zhao¹,², J. Xu², and A. M. Powell Jr.³

¹Nanjing University of Information Science and Technology, Nanjing, China
²Environmental Science and Technological Center, College of Science, George Mason University, Fairfax, Virginia, USA
³NOAA/NESDIS/STAR, College Park, Maryland, USA

Received: 3 October 2013 – Accepted: 22 October 2013 – Published: 1 November 2013

Correspondence to: J. Xu (jxxu14@gmu.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Discrepancies of surface temperature trends in the CMIP5 simulations and observations on the global and regional scales

L. Zhao, J. Xu, and A. M. Powell Jr.

Nanjing University of Information Science and Technology, Nanjing, China
2Environmental Science and Technological Center, College of Science, George Mason University, Fairfax, Virginia, USA
3NOAA/ESRL/PISTAR, College Park, Maryland, USA

Received: 3 October 2013 – Accepted: 22 October 2013 – Published: 1 November 2013
Correspondence to: J. Xu (jxu14@mu.edu)
Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Using the fifth Coupled Model Intercomparison Project (CMIP5) model simulations and two observational datasets, the surface temperature trends and their discrepancies have been examined. The temporal-spatial characteristics for the surface temperature trends are discussed. Different from a constant estimated linear trend for the entire simulation period of 1860–2012, a dynamical trend using running linear least squares fitting with the moving 10 yr time windows are calculated. The results show that the CMIP5 model simulations are generally in good agreement with the observational measurements for the global scale warming, but the temperature trends depend on the temporal change and the regional differences. Generally, contrary to the small discrepancies on the global scale, the large discrepancies are observed in the south- and north-polar regions and other sub-regions.

Introduction

The fifth Coupled Model Intercomparison Project (CMIP5) provided quantitative datasets for estimating climate change based on a suite of climate models (Taylor et al., 2012). The new climate model products are considered predictions of future climate change, which relies heavily on how well the climate models simulate historical climate change. Each model’s reliability impacts the credibility of that model’s predictions. Consequently, evaluating climate model results using observational data sets is necessary to understand the capabilities and limitations of climate change simulations.

The surface temperature trends are a very important component to investigate for understanding the state of the global climate. The trends receive a great deal of attention in the climate change community (Hansen, 2001, 2010; Brohan et al., 2006; and many others), because these trends, anomalies, and variations provide evidence of global warming and the possibility of human influence on climate (Intergovernmental Panel on Climate Change, IPCC). However, based on previous studies, two questions...
CP - Recent Final Revised Papers

Chronology of Lake El’gygytgyn sediments – a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses
Abstract = Final Revised Paper (PDF, 3921 KB) = Discussion Paper (CPD) = Special Issue

Biological proxies recorded in a Belukha ice core, Russian Altai
T. Papina, T. Blyakharchuk, A. Eichler, N. Malygina, E. Mitrofanova, and M. Schwikowski
Clim. Past, 9, 2399-2411, 2013
Abstract = Final Revised Paper (PDF, 1333 KB) = Discussion Paper (CPD) = Special Issue

Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391-2397, 2013
Abstract = Final Revised Paper (PDF, 2745 KB) = Supplement (1635 KB) = Discussion Paper (CPD)

Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya)
T. Opei, D. Fritzsche, and H. Meyer
Clim. Past, 9, 2379-2389, 2013
Abstract = Final Revised Paper (PDF, 963 KB) = Discussion Paper (CPD)

Pre-LGM Northern Hemisphere ice sheet topography
J. Klemann, J. Fastook, K. Ebert, J. Nilsson, and R. Caballero
Clim. Past, 9, 2365-2378, 2013
Abstract = Final Revised Paper (PDF, 10563 KB) = Discussion Paper (CPD)
Chronology of Lake El’gygytgyn sediments – a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses

N. R. Nowaczyk1,2, E. M. Haltia3, D. Ulbricht4,5,6, Y. Wenrich7, M. A. Sauerbrey7, P. Rosén1, H. Vogel1,8, A. Francke1, C. Meyer-Jacob9,10, A. A. Andrejev1,11, and A. V. Loukian11

1Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 5.2 – Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
2University of Cologne, Institute of Geology and Mineralogy, Zülpicher Straße 49A, 50674 Köln, Germany
3Umeå University, Climate Impacts Research Centre (CIRC), 901 07 Umeå, Sweden
4NEISRI, Russian Academy of Science, Magadan, 685000, Russia
*now at: University of Turku, Department of Geography and Geology, Section of Geology, 20014 Turku, Finland
**now at: Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Centre for Geoinformation Technology CeGIT, Telegrafenberg, 14473 Potsdam, Germany
***now at: Institute of Geological Sciences, University of Bern, Baltzerstraße 1-3, Bern, Switzerland
****now at: Umeå University, Ecology and Environmental Sciences, 901 07 Umeå, Sweden

Correspondence to: N. R. Nowaczyk (norbert.nowaczyk@gfz-potsdam.de)

Received: 15 May 2013 – Published in Clim. Past Discuss.: 7 June 2013
Revised: 18 September 2013 – Accepted: 26 September 2013 – Published: 1 November 2013

Abstract. A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 901-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12km wide lake is situated off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El’gygytgyn occurred in concert with global climatic cycles. The upper ~ 160 m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka⁻¹, whereas the lower 160 m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka⁻¹. This study also provides orbitally tuned ages for a total of 9 tephras deposited in Lake El’gygytgyn.

1 Introduction

Lake El’gygytgyn in the Far East Russian Arctic (67°5’ N, 172° E) with a diameter of 12 km is located off-centre in an 18 km wide impact crater formed 3.58 Ma ago (Layer, 2000). The 170 m deep lake has a bowl-shaped morphology, a surface area of 110 km², and a relatively small catchment of 293 km² (Nolan and Brigham-Grette, 2007). The bedrock in the crater catchment consists mainly of igneous rocks, lavas, tuffs, ignimbrites of rhyolites and dacites, nearly anodesites and andesitic tuffs (Gurnis and Koester, 2004), some of them with ages from 83.2 to 89.3 Ma (Layer, 2000) and 88 Ma (Kelley et al., 1999). Thus, they were emplaced during the Cretaceous normal polarity superchron (Cox and Smith, 2004). In early 2009, the International Continental
Chronology of Lake El’gygytgyn sediments

N. R. Nowaczyk1,*,, E. M. Haltia1,*,**, D. Ulbricht1,***, V. Wennrich1, M. A. Sauerbrei2,*, P. Rosén3,*, H. Vogelh,***, A. Francke3, C. Meyer-Jacob2,****, A. A. Andreew3, and A. V. Lozhkin1

1Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 5.2, Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany

2University of Cologne, Institute of Geology and Mineralogy, Zülpicher Straße 49a, 50674 Köln, Germany

3Umeå University, Climate Impacts Research Centre (CIRC), 981 07 Abisko, Sweden

*NEISRI, Russian Academy of Science, Magadan 685000, Russia

**now at: Lund University, Department of Geology, Quaternary Sciences, Solvagatan 12, 223 62 Lund, Sweden

***now at: Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Centre for Geoinformation Technology CeGIT, Telegrafenberg, 14473 Potsdam, Germany

****now at: Institute of Geological Sciences, University of Bern, Belzertalstrasse 1, 3012 Bern, Switzerland

hnow at: Umeå University, Ecology and Environmental Sciences, 981 07 Abisko, Sweden

Abstract. A 318 m long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chrono-stratigraphic methods. The 12 km wide lake is sited in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the Earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be...
Major dust events in Europe during marine isotope stage 5 (130–74 ka): a climatic interpretation of the “markers”

D.-D. Rousseau1,2, M. Ghil1,3,4, G. Kukla2, A. Sima3, P. Antoine4, M. Fuchs5, C. Hatté6, P. Lagrdia2, M. Debre6, and D. Moliné5

1Ecole Normale Supérieure, Laboratoire de Méthodologie Dynamique, UMR8539 CNRS, & CERES-IRIT, 24 rue Lhomond, 75231 Paris cedex 05, France
2Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
3Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1568, USA
4Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA
5Laboratoire de Géophysique Physique, UMR8591 CNRS, 1 place Aristide Briand, 92215 Meudon, France
6Department of Geography, Justus-Liebig-University Gießen, 35390 Gießen, Germany
7Laboratoire des Sciences du Climat et de l’Environnement, UMR212 CEA-CNRS-UVR, Domaine du Bois, 91198 Gif-sur-Yvette, France
8Institut de Physique du Globe de Paris, Sorbonne Paris Cité, University Paris Diderot, UMR7154 CNRS, 75905 Paris, France
9New at: Morphodynamique Continentale et Côtiers, UMR8143 CNRS, University of Rennes, 35621 Mont-Saint-Alban Cedex, France

Abstract. At present, major dust storms are occurring at mid-latitudes in the Middle East and Asia, as well as at low latitudes in Northern Africa and in Australia. Western Europe, though, does not experience such dramatic climate events, except for some African dust reaching it from the Sahara. This modern situation is of particular interest, in the context of future climate projections, since the present interglacial is usually interpreted, in this context, as an analog of the warm interglacial. European terrestrial records show, however, major dust events during the penultimate interglacial and early glacial. These events are easily observed in loess records by their whitish-color deposits, which lie above and below dark chernozem paleosols in Central European records of Marine Isotope Stage (MIS) 5 age.

We describe here the base of the Dohna-Vestonice (DV) loess sequence, Czech Republic, as the reference of such records. The dust is deposited during intervals that are characterized by poor vegetation – manifested by high δ13C values and low magnetic susceptibility – while the fine sand and clay in the deposits show grain sizes that are clearly different from the overlying pleniglacial loess deposits. Some of these dust events have been previously described as “Markers” or Marker Silts (MS) by one of us (G. Kukla), and are dated at about 111-109 ka and 93-92 ka, with a third and last one slightly visible at about 75-73 ka. Other events correspond to the loess material of Kukla’s cycles, and are described as eolian silts (ES); they are observed in the same DV sequence and are dated at about 106-105 ka, 88-86 ka, and 78.5-77 ka. These dates are determined by considering the OSL ages with their errors measured on the studied sequence, and the comparison with Greenland ice cores and European speleothem chronologies.

The five eolian deposits mentioned above, MS as well as ES, correspond to short events that lasted about 2 ka; they are synchronous with re-advances of the polar front over the North Atlantic, as observed in marine sediment cores. These deposits also correlate with important changes observed in European vegetation. Some ES and MS events appear to be coeval with significant dust peaks recorded in the Greenland ice cores, while others are not. This decoupling between the European eolian and Greenland dust depositions is of considerable
CP published papers: immediate metrics

Views and Downloads (calculated since 26 Sep 2013, article published on 26 Sep 2013)

Cumulative Views and Downloads (calculated since 26 Sep 2013, article published on 26 Sep 2013)
Major dust events in Europe during marine isotope stage 5 (130–74 ka): a climatic interpretation of the "markers"

Clim. Past, 9, 2113-2230, 2013
DOI: 10.5194/cp-9-2113-2013
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
CP - Volumes and Issues

<table>
<thead>
<tr>
<th>Volume</th>
<th>Regular Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Volume 9</td>
<td>Volume 9, Number 1, page(s) 1-515</td>
</tr>
<tr>
<td></td>
<td>Volume 9, Number 2, page(s) 517-982</td>
</tr>
<tr>
<td></td>
<td>Volume 9, Number 3, page(s) 983-1383</td>
</tr>
<tr>
<td></td>
<td>Volume 9, Number 4, page(s) 1385-2022</td>
</tr>
<tr>
<td></td>
<td>Volume 9, Number 5, page(s) 2023-2411</td>
</tr>
<tr>
<td></td>
<td>Volume 9, Number 6, page(s) 2413-2432</td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Volume 8</td>
<td>Volume 8, Number 1, page(s) 1-390</td>
</tr>
<tr>
<td></td>
<td>Volume 8, Number 2, page(s) 391-875</td>
</tr>
<tr>
<td></td>
<td>Volume 8, Number 3, page(s) 877-1125</td>
</tr>
<tr>
<td></td>
<td>Volume 8, Number 4, page(s) 1127-1383</td>
</tr>
<tr>
<td></td>
<td>Volume 8, Number 5, page(s) 1385-1779</td>
</tr>
<tr>
<td></td>
<td>Volume 8, Number 6, page(s) 1781-2092</td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Volume 7</td>
<td>Volume 7, Number 1, page(s) 1-338</td>
</tr>
<tr>
<td></td>
<td>Volume 7, Number 2, page(s) 339-683</td>
</tr>
<tr>
<td></td>
<td>Volume 7, Number 3, page(s) 685-1059</td>
</tr>
<tr>
<td></td>
<td>Volume 7, Number 4, page(s) 1061-1469</td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Volume 6</td>
<td>Volume 6, Number 1, page(s) 1-129</td>
</tr>
<tr>
<td></td>
<td>Volume 6, Number 2, page(s) 131-279</td>
</tr>
<tr>
<td></td>
<td>Volume 6, Number 3, page(s) 281-410</td>
</tr>
<tr>
<td></td>
<td>Volume 6, Number 4, page(s) 411-552</td>
</tr>
<tr>
<td></td>
<td>Volume 6, Number 5, page(s) 553-743</td>
</tr>
<tr>
<td></td>
<td>Volume 6, Number 6, page(s) 745-841</td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Volume 5</td>
<td>Volume 5, Number 1, page(s) 1-127</td>
</tr>
<tr>
<td></td>
<td>Volume 5, Number 2, page(s) 129-283</td>
</tr>
</tbody>
</table>
CP - Special Issues

<table>
<thead>
<tr>
<th>Year</th>
<th>Special Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Integrative analysis of interglacial climate dynamics"
Eds. M. Schulz, A. Paul, H. Fischer, U. Herzschuh, and H. Goosse</td>
</tr>
<tr>
<td></td>
<td>"Holocene changes in environment and climate in the central Mediterranean as reflected by lake and marine records"
Eds. M. Magny, N. Combournier Nebeut, D.-D. Rousseau, and M.-F. Loutre</td>
</tr>
<tr>
<td></td>
<td>"Initial results from lake El'gygytgyn, western Beringia: first time-continuous Pliocene-Pleistocene terrestrial record from the Arctic"
Eds. J. Brigham-Grette, M. Melles, P. Minyuk, B. Wagner, T. Cook, and D.-D. Rousseau</td>
</tr>
<tr>
<td></td>
<td>"Advances in understanding and applying speleothem climate proxies"
Eds. A. Mangini, C. Spötl, S. Frisia, G. Lehmann, E. Wolff, and D. Floitmann</td>
</tr>
<tr>
<td></td>
<td>"AICC2012: a new ice core chronology"
Eds. E. Wolff, F. Parrenin, E. Brook, and T. van Ommen</td>
</tr>
<tr>
<td></td>
<td>"Climate variations in South America over the last 2000 years"
Eds. M.H. Masiokas, D. Christie, M. Grousseau, A. Rivera, R. Villa, and T. Kiefer</td>
</tr>
<tr>
<td></td>
<td>"Low oxygen in marine environments from the Cretaceous to the present ocean: driving mechanisms, impact, recovery (IGC/CP Inter-Journal SI)"
Eds. C.D. Sloan, H. Brinkhuis, B. Peedle, and A. Badger</td>
</tr>
</tbody>
</table>
CP - Special Issue

Holocene changes in environment and climate in the central Mediterranean as reflected by lake and marine records

Editor(s): M. Magny, N. Combourieu Nebout, D.-D. Rousseau, and M.-F. Loutre

Download citations of all papers: Bibtex EndNote Reference Manager

Preface "Holocene changes in environment and climate in the central Mediterranean as reflected by lake and marine records"
M. Magny and N. Combourieu Nebout
Clim Past, 9, 1447-1454, 2013
- Final Revised Paper (PDF, 1107 KB)

Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation
M.-A. Siro, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim Past, 9, 1375-1383, 2013
- Abstract - Final Revised Paper (PDF, 1331 KB) - Discussion Paper (CPD)

Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps
S. Samartini, O. Heiri, A. F. Lotter, and W. Tinner
Clim Past, 8, 1913-1927, 2012
- Abstract - Final Revised Paper (PDF, 8544 KB) - Discussion Paper (CPD)

Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontagne
Clim Past, 9, 499-515, 2013
- Abstract - Final Revised Paper (PDF, 3946 KB) - Discussion Paper (CPD)
CP Example of a special issue2: EGU medalist papers

CP - Special Issue

Publications by EGU Medalists

Download citations of all papers: ▶ BibTex ▶ EndNote ▶ Reference Manager

Annotation

Milutin Milankovitch Medal

Equatorial insolation: from precession harmonics to eccentricity frequencies

A. Berger, M. F. Lourens, and J. L. Salzmann
- Abstract
- Final Revised Paper (PDF, 1810 KB)
- Discussion Paper (CPD)
- EGS Milutin Milankovitch Medal 1994

Ecosystem effects of CO₂ concentration: evidence from past climates

I. C. Prentice and S. P. Harrison
- Abstract
- Final Revised Paper (PDF, 1698 KB)
- Discussion Paper (CPD)
- EGS Milutin Milankovitch Medal 2002

Late Quaternary vegetation-climate feedbacks

M. Claussen
- Abstract
- Final Revised Paper (PDF, 1296 KB)
- Discussion Paper (CPD)
- EGS Milutin Milankovitch Medal 2005

Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

M. Samthain, G. Bartoli, M. Preenge, A. Schmitz, B. Schneider, M. Weinelt, N. Andersen, and D. Gerber-Schönberg
Clim. Past, 5, 269-283, 2009
- Abstract
- Final Revised Paper (PDF, 13305 KB)
- Discussion Paper (CPD)
- EGS Milutin Milankovitch Medal 2006

On the Milankovitch sensitivity of the Quaternary deep-sea record

W. H. Berger
- Abstract
- Final Revised Paper (PDF, 2601 KB)
- Discussion Paper (CPD)
- EGS Milutin Milankovitch Medal 2012
Institutional support: INSU-CNRS contract

back-diffusion calculations in order to restore the full magnitude of seasonal variations, a method classically applied for identifying seasonal cycles in damped isotopic signals.

Supplementary material related to this article is available online at http://www.clim-past-discuss.net/9/6035/2013/cpd-9-6035-2013-supplement.pdf.

Acknowledgements. NEEM is directed and organized by the Center of Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CF and FWO), Canada (GSC), China (CAS), Denmark (FIST), France (IPEV, INSU/CNRS and ANR VMC NEEM), Germany (AWI), Iceland (Rannís), Japan (NIPR), Korea (KOPRI), the Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), UK (NERC) and the USA (US NSF, Office of Polar Programs). The numerical simulations with LMDZiso were performed on the NEC-SX8 of the IDRIS/CNRS computing center. The work was supported by the Danish Council for Independent Research – Natural Sciences grant number 09-072689 and 10-092850, by the French Agence Nationale de la Recherche (grants VMC NEEM and CEPS GREENLAND).

The publication of this article is financed by CNRS-INSU.

References
