Adaptive dynamics II:
pairwise invasibility plots,
canonical equation,
classification of singular points

David Claessen
Ecole Normale Supérieure, CERES-ERTI
david.claessen@ens.fr
www.environnement.ens.fr
OBJECTIF

- Une théorie quantitative pour prédire la *tendance evolutive* (a trajectoire), et les *equilibres* de l’evolution

- Contexte écologique : *fitness* est supposé être déterminé par d’interactions écologiques
MECHANISTIC THEORY OF EVOLUTION

- **1850** Darwin “On the origins of species” (1859)
 - “Struggle for existence”: evolution is driven by interactions between individuals
 - But a flaw: “blending inheritance”

- **1880-1900** Mendel (re-discovered by Hugo de Vries)
 - Inheritance by genes

- **1920s** “Neo-Darwinism”
 - Fisher, Haldane, Wright
 - reconciliation of Darwin and Mendel

- **1940-1950s** “Modern Synthesis”
 - Paleontology, taxonomy
 - Theory: population genetics
 - Realistic models of inheritance
 - Focus on relative allele frequencies, fixed gene-repertoire,
 - Non-interacting individuals

- **1970s** game theory (ESS)

- **1990s** adaptive dynamics
EUS AND ESS

- Hamilton (1967), Maynard-Smith and Price (1973)
 - EUS = Evolutionary Unbeatable Strategy
 - ESS = Evolutionarily Stable Strategy
 - a strategy which, when played by everybody, prevents all comparable strategies from increasing in abundance
 - Evolutionary trap
 - Particular shape of the “fitness function”, or: the “adaptive landscape”

- But...
 - Usually only clonal reproduction
 - Only **end-point** of evolution, not the **dynamics**

- Adaptive dynamics:
 - Dynamic counterpart to the EUS concept
ADAPTIVE DYNAMICS

- Metz, Eshel, Christiansen, Taylor, Sigmund, Roughgarden, Hammerstein...
 - Geritz, Jacobs, Dieckmann, Ferriere, Hofbauer, Rinaldi, etc
- Roots in ecology:
 - fitness is derived from a model of ecological dynamics and ecological interactions (competition, predation, mutualism, etc)
- “Individual-based” approach
 - individual → population dynamics → selection → individual
- Original formulation (Metz et al 1996), basic assumptions:
 - Clonal reproduction
 - Large population size, rare mutations
 - Unique and global attractor of the population dynamics
TRAITS

- “Trait” or “evolving trait”
 - = the phenotypic trait that is assumed to be evolving
 - Often all other phenotypic traits are assumed to remain constant

- Numerical traits such as
 - Body size (length, mass, volume)
 - Ex: body size at maturation
 - Fecundity, survival
 - Resource utilisation (specialisation)

- “Type” = individual(s) with a certain trait value

- Monomorphomic vs. polymorphic
 - Monomorphomic = all individuals in the population have the same trait value
 - Polymorphomic = there are 2 or more types (are coexisting in the population.)
FITNESS

Definition:
- The asymptotic average rate of exponential growth of a small population of type \(x \) in a given environment \(E \)

\[
f = \lim_{t \to \infty} \frac{1}{t} \ln \frac{N(t)}{N(0)}
\]

- The given environment \(E \) depends on the ecological dynamics of the currently existing ecological community

Resident = the current population, into which mutants arrive
- The background for evaluating invasion fitness
INVASION FITNESS - EXAMPLE

- Stochastic individual-based model
 - “Branching process”
 - “Birth-death process”
- Each individual gives birth with rate B
- Each individual dies with rate D
- Expected per capita rate of increase $r = B - D$
 - If $r < 0$ then extinction with probability $P_{\text{ext}} = 1$
 - If $r > 0$ then extinction with probability $P_{\text{ext}} < 1$, exponential growth (“invasion”) with probability $(1 - P_{\text{ext}}) > 0$
RESIDENTS AND MUTANTS (PART 1)

- Simple case: assume a monomorphic resident population of type x
- The resident population is in its stationary state corresponding to its trait x
 - Equilibrium, limit cycle, chaotic dynamics
- The environment E represents the ecological interactions (density-dependent)
 - Ex: Food density, available space, available mates
- A mutant arrives, of type x'
 - Its or fitness is thus: $f(x', E_x)$ or, more shortly: $f(x', x)$

mutant, resident
RESIDENTS AND MUTANTS (PART 2)

- If \(f(x', x) > 0 \) then the mutant can invade
- If \(f(x', x) < 0 \) then the mutant will go extinct

What happens after invasion?

Consider the hypothetical case that the mutant has become the resident, and the ex-resident tries to invade.

- If \(f(x, x') > 0 \) then the ex-resident can invade
- If \(f(x, x') < 0 \) then the ex-resident will go extinct
RESIDENTS AND MUTANTS (PART 3)

We can now distinguish different cases

- $f(x', x) < 0$
 - The mutant cannot invade (goes extinct)

- $f(x', x) > 0$ and $f(x', x) < 0$
 - The mutant can invade and replaces the ex-resident

- $f(x', x) > 0$ and $f(x', x) > 0$
 - The mutant can invade and the co-exists with the resident
 - “Mutual invasibility”
TRAIT SUBSTITUTION SEQUENCE

- Direction evolution (by directional selection)
- A sequence of invasions of mutants, followed by replacement.
 - Resident $x=0.1 \rightarrow$ mutant $x=0.12$ replaces
 - Resident $x=0.12 \rightarrow$ mutant $x=0.13$ replaces
 - Resident $x=0.13 \rightarrow$ mutant $x=0.15$ replaces
 - etc...

- Assumption: mutation limited evolution
 - separation of time scales
 - Fast ecological dynamics
 - Slow evolutionary dynamics

- Questions:
 - How fast does the trait evolve?
 - What is its trajectory? (The “course” of evolution)
 - Where does it stop? (Does it stop?) What happens next?
INVASION FITNESS - EXAMPLE

- Lotka-Volterra competition

\[
\frac{dN_i}{dt} = rN_i \left(1 - \sum_j a(x_i, x_j) \frac{N_j(t)}{K(x_i)} \right)
\]

- Rare mutant of type \(x' \), resident types \(j \) at equilibrium

\[
\frac{1}{N'} \frac{dN'}{dt} = r \left(1 - \sum_j a(x', x_j) \frac{\hat{N}_j}{K(x')} \right)
\]

- Rare mutant of type \(x' \) in monomorphic resident of type \(x \) (\(N_{\text{res}} = K(x) \))

\[
f(x', x) = r \left(1 - a(x', x) \frac{K(x)}{K(x')} \right)
\]
THE CANONICAL EQUATION (V1)

- Unstructured populations
- The speed of directional evolution

\[
\frac{dx}{dt} = \frac{1}{2} \alpha(x) \mu(x) N(x) (\sigma_m(x))^2 \frac{\partial f(x', x)}{\partial x'} \bigg|_{x' = x}
\]
THE COURSE OF EVOLUTION

- Directional selection
 - $\frac{dx}{dt} > 0$ or <0

- Evolutionary singular strategies
 - $\frac{dx}{dt} = 0$
 - What happens?

- Graphical tool: PIP
 - Pairwise Invasibility Plot
 - Works very well for 1-dim traits
 - Does not work (well) for traits of dim 2 and higher
Figure 1. Example of a pairwise invasibility plot. The resident’s and mutant’s strategy are denoted by x and y, respectively. The shaded area indicates combinations of x and y for which the mutant’s fitness, $s_x(y)$, is positive. The singular strategy is denoted by x^*.
A bit more adaptive dynamics theory for later reference

fitness contour plot
x: resident
y: potential mutant
A bit more adaptive dynamics theory for later reference

Pairwise Invasibility Plot

Trait Evolution Plot

PIP

TEP

y

x
A bit more adaptive dynamics theory for later reference

Evolutionary Repellers

Evolutionary Attractors

evolutionary "branching"
DIMORPHIC EVOLUTION

Figure 4. A mutant’s fitness in a dimorphic population with strategies x_1 and x_2 as a perturbation from the fitness in a monomorphic population with a single strategy x^* that is an ESS (a–c) or not an ESS (d–f).
THE CANONICAL EQUATION (V 2)

- *Structured populations*
- The speed of directional evolution

\[
\frac{d}{dt} X_i \approx \frac{\beta}{T} \frac{\hat{n}_i \mu(X_i)}{\sum_j u_j \text{Var}[\sum_l v_l \xi_{lj}]} \mathbb{M}(X_i) \frac{\partial S_x(X_i)}{\partial Y}^T
\]

- Durinx and Metz (2005)