Europe

D-D Rousseau, Université Montpellier, Montpellier, France
E Derbyshire, Royal Holloway, University of London, Egham, UK
P Antoine, Paris, France
C Hatté, University of Arizona, Tucson, AZ, USA

© 2013 Elsevier B.V. All rights reserved.

This article is reproduced from the previous edition, volume 2, pp. 1440–1456, © 2007, Elsevier B.V.

Introduction

The loess of Europe makes up the western end of the most extensive and voluminous loess belt on Earth that stretches some 10000 km eastward to China’s Pacific coast. Owing to its eolian origin, loess occurs on the landscape as relatively thin drapes, a few meters thick, on mountain foot slopes and on river terraces. Loess from five to several tens of meters in thickness is mainly found in basins, major river valleys, and on plateaus and extensive plains, as shown in the influential map of loess distribution in Europe published by Grahmann (1932). European loess generally lies outside the limits of the last Fennoscandian and Alpine glaciations (Figure 1), with extensive mantles in southern Russia, northern Ukraine and Belarus in the east, northern France and southern England in the west, and the Po Basin of northern Italy in the south. Although loess is described as an eolian sediment in Chinese texts more than 2 ka old, the process link between dust transport and loess deposits was not widely accepted in Europe until the German scientist Richtofen published his work on the Chinese loess, which he considered very similar to the loess of eastern Europe (Pye, 1995; von Richtofen, 1882). For a definition of loess, see Pye (1984).

The discovery and first scientific description of European loess is attributed to Karl Caesar von Leonhard, who, in approximately 1820, noted pale yellow, unstratified sediment, containing snail shells and fossil root channels, in the Neckar River Valley east of Heidelberg, Germany. He called it ‘loess,’ a local word used to indicate a yellow lime-rich soil (Smalley et al., 2001). A number of years later, von Leonhard showed the loess outcrop to Charles Lyell who was so impressed that he included substantial text on loess in his Principles of Geology (1833), which certainly led to increasing recognition of loess by the world’s geologists.

Loess of Europe: The Material

Mineralogy of European Loess

The most common mineral in most European loess is quartz (40–80%), the principal ancillary minerals being the feldspars (predominantly K-feldspar), carbonates, and clay minerals. Exceptions include some Carpathian Basin loess, in which phyllosilicates are the dominant mineral group (up to 34%). Heavy minerals, although constituting only a small percentage (<5%) by weight, have proved useful as indicators of provenance and degree of pedogenensis in both loess and paleosol units (Maruszczak and Wilgat, 1995). While the calcite–dolomite ratio is fairly consistent at about 3:1, carbonate content varies widely within Europe, for example, <11% in Poland, 12–15% in The Netherlands, 5–20% in east Kent (UK), <12 to >20% in northern France, and up to 25% at some sites in western Germany. Carbonate is present in both clastic and secondary forms, the latter occurring as concretions (loess dolls’), pore linings, encrustations, and intergranular cements.

The finest fractions (clay grade: <2 μm) of loess and paleosols are rich in clay minerals, and also include varying amounts of lithic and biogenic quartz. Kaolinite and illite are the most common clay minerals, together with chlorite, vermiculite, smectite, and several mixed-layer clays. Clay species vary regionally in response to source-area rock composition, sorting during transport, and postdepositional weathering. Smectite/illite is prominent in the loess of southern Poland (50–80% of the clay grade, the highest values occurring in the older units), with illite (up to 40%) and minor kaolinite (2–5%; Grabowska-Olszewska, 1988). The smectite group (montmorillonite, nontronite, and beidellite) is also prominent in loess and paleosols in parts of the Ukrainian plains, together with hydromicas, mixed-layer hydromica–montmorillonite minerals, kaolinite and halloysite. Ancillary minerals include chlorite, goethite, calcite, gypsum, and quartz (Perederij, 2001).

Morphology and Particle Size Distribution of European Loess

Although frequently described as a homogeneous sediment, the bulk properties of loess show important variations with age (i.e., the depth below the surface), location, site, source area, topography, and depositional and weathering history. For example, in regions such as Europe that were subjected to multiple glaciations in the Quaternary, glacial grinding produced abundant ‘rock flour’ that was deposited by meltwater, and reworked by the wind, as well as by periglacial braided fluvial systems such as the Danube, Dnieper, and Rhine rivers. The mainly mechanical breakage of rock particles into silt-sized (2–63 μm diameter) dust susceptible to deflation yielded particles that are dominantly of tabular and blade shape (Smalley, 1966). As most of these silt particles are transported in suspension, they lack the edge-rounding and ‘frosted’ surface texture so characteristic of wind-blown sand grains. Partly rounded particles in loess tend to be nonquartz components, including grains arising from certain secondary (chemical) postdepositional processes. The quartz grains in some of the loess in Normandy, France, and the Channel Islands are subangular in shape, but appear rounded because they are almost completely mantled in a clay coating rich in Si, Al, and Fe.

Sediments described as loess in Europe show a wide range of particle sizes. Leaving aside intra regional variations arising from distance from sources, silt content of loess by weight is generally between 60 and 80%, with <20% clay grade, and...
sand grades of <15% across a swathe of western European countries. In the loess of the Russian plain and Ukraine, the content of fine silt and clay (<5 μm) in the south is approximately twice than that found further north, the particle size gradients being north–south in the west and northwest–southeast further to the east. Higher clay contents are generally found between the Volga and the Ural Mountains (Rozycki, 1991). A southeast-to-northwest particle size gradient, resulting from the northwestward advection of fine dust from the Caspian–Aral depression, is evident in southeast Europe; this transition zone runs northeastward from Bucharest, and marks the border between the Caspian–Black Sea loess zone and the western European loess supplied from dominantly Atlantic westerly (proglacial) and subsidiary southerly (Saharan) dust sources (Figure 2; Rozycki, 1991). Stratigraphically important volcanic tephras are present on both sides of this transition zone – the Eifel tephra, on the west side, indicating transport by the (south) westerlies, and those from the Caucasus carried by southeasterly winds. Other tephras have been identified in European loess series as, for example, the volcanic ash fallout of the Bag tephra in Hungarian loess during marine isotope stages (MIS) 10 and 8, and the tephra layer identified in the MIS 3 loess in the Paks sequence (Frechen et al., 1997; Horvath, 2001). More recently, in Germany, the loess sequences of the Rhine Valley (Nussloch) have been shown to record the Etlviller tuff (Semmel, 1967) fallout during loess deposition in late MIS 2 (Antoine et al., 2001) contributing greater precision to the discussed age of this ash layer (Juvigné and Wimde, 1988; Zöller et al., 1988).

The loess of western Europe varies with age and geographical location. Loosely packed coarse to medium angular silts, with little clay mineral content and limited, often localized cementation (comparable to much Asian loess), can be found at many sites in continental Europe. Thus, fabric varies with climatic type and variation through time, not only with changes between soil saturation and desiccation as well as the freeze-drying associated with cryoturbation (Van Vliet-Lanoë and Coutard, 1984), but with a suite of other processes including bioturbation, leaching and redeposition, snow meltwater infiltration, mineral weathering, natural loading and unloading, and reworking by running water and mass movements on
slopes. Preferred fabric trends (anisotropic fabrics) are quite common in European loess. They range from visible lamination (as in alluvially redeposited loessic silts; Derbyshire and Mellors, 1988) to the strongly parallel particle fabrics generated in situ by cyclic freezing and thawing. Limon à doubles is a distinctive, noncalcareous loess facies found from the Channel Islands off the Normandy coast in the west to the Russian Plain in the east. Its distinctive fabric consists of thin, gently dipping alternating laminae of brown, clay-rich and gray, clay-poor layers, between 1 mm and >1 cm thick (Derbyshire et al., 1988). The 'doubles’ features are widely regarded as postsedimentary in origin, having been interpreted as thin layers enriched by pedological clay overprinted on previous grain size discontinuities, the concentration of clay and silt particles on lamellar freeze–thaw features having followed rapid decay of the permafrost at the end of the last glacial.

Calculation of mass accumulation rates (MARs) for loess of the last glacial period (~28–13 ka BP) at over 30 sites across Europe (Frechen et al., 2003) has indicated variable accumulation rates ranging from ~100 to 7000 g m⁻² year⁻¹ along an increasingly continental east–west transect. Making allowances for variation in regional and local silt sources as well as precipitation and wind patterns, which tend to result in the highest individual accumulation rates occurring on terraces of major rivers such as the Rhine, a general pattern emerges in which the lowest mean rates occur on the northwestern periphery of Europe in France and Belgium (~100–600 g m⁻² year⁻¹), with higher accumulation rates evident toward the south-east, in the Czech Republic, Austria, and Hungary (800–3200 g m⁻² year⁻¹).

Loess of Europe: The Origin

Atmospheric dynamics in Europe during the last glacial period were probably very different from those of today because of the presence of extensive and thick ice sheets. Thus, air masses were channeled into a west-to-east trending corridor along the 50° N parallel that broadly corresponds to the main loess-deposition belt in Europe. To the east of the Carpathians, in contrast, elevated terrain gives way to the western lowlands of Ukraine and Tajikistan. Here, reduced topographic constraints on airflow resulted in a mode of loess deposition quite different from that in the west.

Based on the comparison between the loess zones and mineralogical data (heavy minerals and silts), it is possible to locate the main source of Weichselian (last glacial age) loess in Europe. These studies show that loess in northwestern Europe originated from the North Sea, the central part of the English Channel, and Brittany (eastern English Channel, westward of the Cotentin peninsula). On the other hand, there were also local contributions, linked to the deflation of the main alluvial plains (Seine, Oise, Aisne, Marne, and Somme), which were mixed with particles from the bedrock substratum (frost-shattered chalk and sand). There were also contributions from the dried-out and extended paleoestuaries of the Seine and Somme rivers, and from the wide alluvial braided floodplains of periglacial valleys.

According to Lautridou (1985), eolian deflation during the Weichselian should have prevailed in the large estuaries located 20–30 m below present sea level in the English Channel, which were partially preserved during the maximum lowering of sea level at the Last Glacial Maximum (LGM). In this context, loess sedimentation in northern France should have been supplied by deflation, which prevailed in the paleoestuary of the Somme River, and on the dense paleochannel system of the eastern Channel (Antoine et al., 2003b; Auffret et al., 1982). In addition to these sources of loess, there were more local contributions, originating from the Oise, Marne, Meuse, or Rhine Valleys. In Belgium, study of heavy minerals has shown that the main source of the Weichselian loess was the floor of the North Sea, which, at that time, consisted of sets of braided channels carrying the outwash of the Fennoscandian Ice sheet (Juvgîné, 1985). Quite apart from any climatic factors, loess sedimentation in Europe was controlled by sources of available dust. Thus, the main zones of deflation identified in Europe are the dried-out plains (paleoestuaries) of the English Channel and the North Sea where it was exposed by sea-level lowering. Southward, the northern part of the Adriatic Sea at the mouth of the Po River played a similar role. Other sources include the alluvial plains occupied by braided channels during the Pleniglacial phases (times of maximum ice extent, roughly from 70 until 12 ka BP) of the last glacial period. In these fluvial systems typical of periglacial environments, the numerous sandy bars, with sparse vegetation between channels, were probably subjected to intense eolian deflation. The Ukrainian loess, to the south of Kiev, probably originated in such a manner.

The European loess deposits occur as three main morphological types corresponding to the depositional environment and the presence of sedimentary traps.

1. The platform loess, or ‘cover loess,’ in western Europe, occurs as a mantle of relatively constant thickness. This loess is a homogeneous facies, characterized by considerable spatial continuity that corresponds to the coldest and driest phases of the upper Pleniglacial of the Weichselian (~30–15 ka BP).

2. Slope deposits – more localized, and of variable thickness – are preserved in sedimentary traps. This loess is deposited leeward of asymmetric valleys, features that occur frequently in Europe; loess deposition is influenced by a combination of valley orientation and wind direction. Dust accumulates on the leeward slope, where landform-induced turbulence allows dust to settle and where snow cover and local vegetation act as dust traps. In contrast, windward slopes are zones of deflation (nondeposition). Such phenomena also occur in a variety of local settings, including alluvial terraces and the acute slope angle between marine cliffs and fossil beaches, such as at Sangatte (northern France). The famous sequence at Red Hill near Brno shows the succession of several cycles of loess slope deposits linked to alluvial terraces. Kukla (1977) reviewed several such deposits in Europe.

3. A third dune-like morphology, known as loess Greda, is linked to platform loess. Loess Greda look like elongated dunes several kilometers long; they have been described in central Europe by Léger (1990), and have also been
observed on the right bank of the Rhine Valley near Heidelberg (Antoine et al., 2001). In the latter location, loess accumulation is mostly represented by upper pleniglacial deposits (35–15 ka), which reach a thickness of 15–20 m; Greda are oriented NNW–ESE, with small, discrete valleys between them.

Paleosols and Their Stratigraphic Significance in the Loess of Europe

The different loess units show a fundamentally cyclic climatic origin (Kukla, 1977). This cyclicity is expressed as an alternating series of loess and paleosols that correspond to global glacial–interglacial climate cycles of 100-ka average duration for the most recent ones (Kukla and Cilek, 1996). Every cycle has a forest soil B-horizon, which is overlain by a steppe (chernozem) soil in central and eastern Europe, and a humiferous forest soil in western Europe. In slope deposits, a light-colored dust layer overlies the black humiferous horizon abruptly; it is overlain by a pellet sand layer, which is capped by loess deposits. In ‘platform’ settings, this sequence is not so apparent; the slope deposits, which have preserved a much more complete record of past environmental changes, are more informative than those in platform settings. Platform deposits contain only direct airfall loess trapped by the local vegetation. Six stages in the development of soil complexes in loess have been summarized by Kukla and Koci (1972) (Figure 3). The recognition of the different soils provides information on the paleoenvironmental conditions, and also provides a very useful tool for section-to-section correlation.

Many European loess studies have shown that abrupt changes in sedimentation are recorded in soil complexes as ‘markers.’ Markers are generally finer grained than normal loess but have no significant differences in composition (Hradilova and Stastny, 1994). An intriguing problem raised by markers is that of identification of the dust source which, given its fine grain size, may not have been close by (Rousseau et al., 1998a). Markers may represent long-distance eolian transport because of their characteristic sharp contacts and much finer grain size. Thus, dust storms of continental magnitude seem to offer a possible explanation for the deposition of markers. Several studies report major dust events in historical time. Kukla (1977) reported that, on 5 April 1960, a storm deposited 3 cm of dust in Romania, carried from the Kalmyk steppe in Central Asia, for example, a distance of more than 2000 km. Several dust storms have also transported red dust from the Sahara to Europe during the past 20–30 years.

While loess sequences of the last climatic cycle are the best preserved in Europe, some loess–paleosol sequences show older cycles. In northwestern Europe, the St. Pierre-lès-Elbeuf sequence in Normandy shows four cycles (Lautridou, 1974), overlying a tufa with a mollusk fauna of probable MIS 11 (~400 ka) age (Rousseau et al., 1992). The Somme Valley shows overlapping loess and paleosol sequences that overlie the different river terraces (Antoine, 1994). The oldest (silty) loess, located on top of the terrace dated at about 1 Ma, was deposited at the end of the Lower Pleistocene before the B–M magnetic reversal (Antoine et al., 2000, 2003a). The St. Vallier loess, near Lyon, is among the oldest in Europe, having been dated to 2.5–1.8 Ma by means of a tephra horizon of the Mont Dore volcanic system (Pastre et al., 1996). In the Rhine Valley, the Achenheim loess includes five loess–paleosol couplets, rich in terrrestrial mollusks (Lautridou et al., 1986; Sommé et al., 1986). This sequence contains a yellow loess (the ‘canary loess’) that corresponds to MIS 12 (Rousseau, 1987), and indicates particularly cold conditions. Finally, in central Europe, the Krems and Red Hill sequences (Czech Republic) are famous for the long climatic history they preserve, stretching back to the Brühnes–Matuyama boundary at about 0.75 Ma (Kukla, 1977). The loess sequence at Starzendorf (Austria) records the Gauss–Matuyama paleomagnetic boundary at about 2.5 Ma (Kukla et al., 1990).

Dating Loess in Europe: Geochronology

Most European last glacial loess chronology is based on luminescence dating methods, which include thermoluminescence (TL), optically stimulated luminescence (OSL), and infrared stimulated luminescence (IRSL) (Lang et al., 2003; Wintle et al., 1984; Zöller and Wagner, 1990). As the electron traps involved in these different solid-state physics processes appear to behave almost independently, several age determinations can be obtained from the same sample.

In Europe, the most common materials used for

14C dating are charcoal and wood. These materials are uncommon in loess, and are rarely distributed in an order that provides a continuous, high-resolution chronology. A chronological framework was developed for the Nussloch loess sequence in Germany, based on AMS 14C dating of loess organic matter (Hatté et al., 2001a). The protocol used in this study is adapted to the particular characteristics of the Nussloch sequence (low organic carbon content, high carbonate content, and iron under $+2$ oxidation state; Hatté et al., 2001b). The resulting radiocarbon chronology is in excellent agreement with OSL ages, although the two chronological methods do not date identical events. Indeed, since luminescence techniques measure the time elapsed since the last sunlight bleaching event,
and thus characterize pulses of dust, 14C on loess organic matter determines the time elapsed since the death of the plant that grew and died on a loess surface before being covered by a new dust pulse. There is no notion of pulse for 14C chronology since vegetation is always present. The general difference between luminescence and 14C chronologies can be summarized by saying that the first characterizes a temporal framework in steps whereas the second smooths and somewhat leads the first one (Figure 4).

Variability of Loess Sedimentation within a Single Glacial Period (Last Climatic Cycle) in Western Europe

Stratigraphic, paleopedologic, mollusk, and palynologic data, coupled with sedimentology, magnetic susceptibility, and TL/IRSL ages, provide a new picture of the last climatic cycle in northwestern Europe, and its connection with neighboring regions (Figure 5). The last interglacial period (including MIS 5e and part of MIS 5d; Kukla et al., 1997) in Europe is called the Eemian. After the truncation of the Bt horizon that formed in the Eemian paleosol (the Rocourt soil), the early Weichselian is represented by a complex of humiferous paleosols, known as the St. Saufflieu soils (Antoine et al., 1994). This complex is characterized by the superimposition of a gray forest soil, locally doubled (Bettencourt-St. Ouen, Villiers Adam) and two or three steppe soils. The lower part, with its gray forest soils, correlates with the Brørup/Rederstall/Odderade succession (MIS 5d/5a; Figure 6). This sequence indicates a first continentalization of the environment, with development of gray forest soils in loess-derived colluvium, under a boreal forest of pine and beech (Munaut in Antoine et al., 1994, 1999). Above an erosional phase with evidence of deep seasonal frost (the end of MIS 5a), the upper part of the complex is characterized by soils that formed under some birch in a steppe environment with grass and aster family plants. This part of the pedocomplex probably represents the rapid climatic oscillations that prevailed during the transition between MIS 5 and 4 (interstadials 20 and 19 of the GRIP ice-core record; Dansgaard et al., 1993). The whole paleosol

sequence shows an increasingly continental environment in two main phases, contemporaneous with sea-level lowering (Somme et al., 1994). Thus, the palaeogeographic change in the North Sea–Channel region contributed to the disappearance of the oceanic influence at the end of the last interglacial.

The upper boundary of the early glacial is defined by the erosive contact at the top of the last steppe soil (Antoine et al., 1994). After the deposition of the first loess (the lower Pleniglacial), an extensive but short erosive episode is marked by laminated colluvium with soil fragments, cryoturbation, and frost cracks, which indicate frost reworking of the underlying levels. This unit, up to 2 m thick in northern France, is a marker layer in the oldest part of the Weichselian. A similar record can be traced all the way to the Rhine Valley (Antoine et al., 2001; Haesaerts et al., 2005).

The lower Pleniglacial loess is locally covered by younger loess, often heterogeneous and containing granules. Above this loess, a soil complex is found (Complex of St. Acheul–Villiers Adam) that corresponds to most of the middle Pleniglacial (MIS 3, 50–30 ka). During this period, loess sedimentation diminished and was interrupted by several phases of pedogenesis. These phases produced brown boreal soil to arctic brown soils.

In most of the profiles in the Somme and Normandy, this period is represented by a unique polygenetic horizon (St. Acheul).

Elsewhere, in the sequences found in Villiers Adam, the loess is thicker (4 m) and contains four paleosols: a leached boreal soil, a humiferous arctic meadow soil (Van Vliet-Lanoë, 1987), a tundra gley, and an Arctic brown soil.

The lowermost part of the upper Pleniglacial loess marks the end of pedogenesis; it contains frost wedges and evidence of thermokarst (Antoine et al., 2001). Following that, the main body of the upper Pleniglacial loess was deposited between ~25 and 15 ka. Typically, these deposits are about 4–5 m thick, but may locally reach 6–8 m in thickness. The upper Pleniglacial loess contains as many as three units, separated by periglacial paleosol horizons (Antoine, 1991). The most common unit is the Nagelbeek/Kesselt tongue horizon, dated to about 22 ka 14C year (Haesaerts et al., 1981). The modern soil is developed in the uppermost upper Pleniglacial loess. A high-resolution investigation in some western European loess has documented climate variability through different indices (biological, sedimentological, geochemical, and geophysical). The results show that during the last climatic cycle, the main loess deposition interval started at ~70 ka

and ended at ~16–15 ka (Rousseau et al., 1998b). Two main phases of loess deposition, centered around 60–55 and 23–8 ka BP, are separated by a period with much lower sedimentation rates of between ±55 and 35 ka (Antoine et al., 1999, 2001). A similar sequence, with local variations due to the more continental conditions inferred from their geographical location, is available for central Europe (Kukla, 1977; Figure 7). A brown forest Bt soil at the base corresponds to the last interglacial. It is overlain by a biogenic steppe soil of Chernozem type, interrupted by a Marker I, 2–10-cm thick. This is a sharply delimited band of light-colored dust. It separates the underlying chernozem from the overlying hillwash loam composed of sand-sized fragments known as pellet sands. Fine loess caps this first pedocomplex (PKIII). This first eolian deposit is succeeded by a second pedocomplex (PKII) with a pseudogley overlain by a chernozem interrupted in some rare places by a new Marker horizon (Ila), immediately followed by small pellet sands capped by another loess. This succession is repeated a second time with a thicker chernozem interrupted by Marker II, overlain, in turn, by thick pellet sands and a loess with an age placing it at the base of MIS 4. A third soil complex developed after this lower Pleniglacial loess; it consists of a brown decalcified soil overlain by a thin loess, then a humiferous chernozem. This is pedocomplex PKI. Finally, the upper Pleniglacial displays the thickest loess deposits, with intercalated gleys horizons, as observed in western Europe. A similar pattern, with regional differentiation, has also been described in the Ukrainian loess deposits near Lubny (Rousseau et al., 2001). At Lubny, the loesses and paleosols correlate closely with those of central (Kukla, 1977) and western Europe. Thus, there is a remarkable consistency in the history of the last climatic cycle as recorded in the loess sequences of western, central, and eastern Europe over a distance of 2500 km, as shown by Haesaerts et al. (2003, 2005). The differences observed relate to local conditions arising from the proximity of the Fennoscandian ice sheet and Alpine glaciers, or the influence of the westerlies and climatic variations over the North Atlantic.

Paleoclimatic Proxies in European Loess

The past few decades have seen the development of new paleoclimatic proxies, allowing a more precise interpretation of the European loess sequences. These include loess and paleosol geochemistry, identification of periglacial features, molluscan paleoecogeography, magnetic susceptibility, and detailed sedimentology.

Geochemistry

Few organic geochemistry investigations are available for European loess, but several recent studies of loess have been completed in France (Hatte, 2000; Hatté et al., 1998) and Germany (Hatté and Guiot, 2003; Hatté et al., 1998, 1999, 2001a; Pustovoytov and Terhorst, 2004). Other investigations are in progress in eastern Europe. Organic geochemistry studies...
are based on the ‘fingerprint’ of environmental conditions provided by plant δ13C, and on its undisturbed conservation during burial and subsequent sedimentation. During photosynthesis, plants discriminate against 13C because of differences in chemical and physical properties due to its greater mass (O’Leary, 1981). Both major types of photosynthetic pathways have a characteristic isotopic signature. C4 plants living in rather severe climatic conditions, with high insolation and/or water stress, show a mean δ13C of −13 ± 2‰, whereas C3 plants, which prefer more temperate environments, present δ13C values around −26 ± 4‰ (O’Leary, 1988). Variability around the mean δ13C values in leaves of terrestrial vegetation (foliar δ13C) results from environmental changes that influence stomatal conductance (e.g., Feng and Epstein, 1995). These results show that variation of the δ13C in C3 plants within the range −30 to −22‰ is primarily influenced by the δ13C, the concentration of atmospheric CO2, and by precipitation, and, second, by soil type and texture and insolation. Temperature influence differs from one biome (association of plants) to another, but remains the most important parameter in the definition of the biome itself. On the other hand, variations of isotopic signature in C4 plants within the −15 to −11‰ interval must be almost exclusively linked to variations in the δ13C in atmospheric CO2. All these metabolic responses to environmental changes indicate that carbon isotopic composition of plants reflects climatic variations.

In contrast to interglacial soils, typical loess is associated with sparse vegetation and a weak rhizosphere. The absence of well-established pedogenesis and the dry glacial environment favor the degradation of organic matter without distortion of the isotopic signal, making typical loess suitable for an organic geochemical study. When properly prepared (Hatté and Gauthier, 2006), the carbon isotopic composition of loess organic matter is a powerful paleoclimatic indicator, because it inherits the δ13C of growing plants that trap dust at the time of deposition. As environmental conditions and vegetation types (C3 vs. C4 photosynthetic pathways) control the δ13C levels in plants, the δ13C values of organic matter in loess can be used to infer temporal variations in climate and vegetation. Thus, the isotopic signal cannot be interpreted solely in terms of change in the ratio of C3 to C4 plants. Indeed, considering only the C3 photosynthetic pathway, δ13C variations can be linked to first order changes in atmospheric CO2 (δ13C and concentration) and precipitation and, at the second order, to temperature, soil type and texture, and insolation.

In the Rhine Valley (Achenheim, France, and Nussloch, Germany), Hatté et al. (1998) demonstrated, with values ranging from −23 to −26‰, C3 origin of organic matter during the last glacial period (70–12 ka BP), whereas Pustovoytov and Terhorst (2004) exhibited some C4 carbon-enriched layers (δ13C from −16 to −19‰) within the same period in Schattenhausen, <1 km to the east of Nussloch. This conflict of view remains to be resolved, but two interpretations can be proposed. One concerns complications arising from carbonates in the loess. Another possibility is that there existed a mosaic of vegetation types, such as a mixture of C4 grasses and C3 trees.

Considering the C3 photosynthetic pathway only, Hatté et al. (1998, 1999) interpreted the variations in the δ13C of loess organic matter in Nussloch (Germany, Rhine Valley) and Achenheim (France, Rhine Valley) as a response to changes in paleoprecipitation during the last glaciation. Using a linear relation between loess δ13C and atmospheric CO2 concentration and δ13C, on the one hand, and precipitation on the other, Hatté et al. (2001b) attempted a deconvolution of the loess δ13C record to reconstruct paleoprecipitation. However, paleoclimatic inferences were limited because only parameters of the first order were taken into account. Nevertheless, use of a vegetation model (Biome4) provides the required greater complexity by considering first- and second-order parameters. Inverse modeling of loess δ13C in Nussloch provided reconstructed paleoprecipitation values that varied between 240 and 400 mm year−1 throughout the last glaciation (Hatté and Guiot, 2005). This clearly demonstrated atmospheric teleconnections with the Greenland ice sheet extension, by matching Dansgaard–Oeschger (D/O) events with a precipitation increase of ~100–200 mm year−1 (Hatté and Guiot, 2005; Figure 8).

Cryoturbation and Evidence of Ice Wedges

Cryoturbation features and ice-wedge casts occur at different stratigraphic levels in the northwestern European loess sequences, and represent marker horizons that allow correlation of sections (Lautridou and Sommé, 1974). Following the studies of Pissart (1987) and Van Vliet-Lanoë (1987), cryoturbation features are interpreted as the result of differential expansion of different surface materials in response to freezing. Indeed, in contrasting materials (e.g., loam vs. sand), the experiments performed in Caen indicate clearly the establishment of structures with a drop or pear shape when the pressure generated by this process is blocked at the surface by refreezing. In poorly drained environments with a surface water sheet, the cryogenic expansion, blocked by surface freezing, causes downward deformation. Conversely, in a well-drained environment, the cryogenic expansion can exert a force toward the surface, and so produce certain relief forms (tundra ostioles, soils with ice mounds).

Ice-wedge casts are produced from cracks caused by thermal contraction. They form progressively in a series of events, as follows: (1) cracking of the permafrost by thermal contraction in winter and (2) infilling of cracks with meltwater produced by thawing of snow in spring, followed by refreezing (French, 1996; Péwé, 1962). The development of these structures indicates the occurrence of permafrost, with a mean atmospheric temperature lower than −8 °C, and lack of a thick snow cover. After the degradation of the ice wedge, the structure is often fossilized by loess sedimentation. The ice-wedge casts can be as large as 1 m wide and 2 m deep in the loess of northern France and Belgium (Figure 9). In plan view, ice-wedge casts make up a network of polygons ±10–12 m wide. Their presence in the loess indicates significantly colder temperatures during the last glacial period.

Terrestrial Mollusks and Paleozoogeography

Terrestrial mollusk (gastropod) assemblages are one of the most powerful paleoclimatic proxies in carbonate loess sequences (Figure 10). Quaternary mollusk species are extant and do not show any changes in their ecological requirements.
As the identification of the species is performed by considering the shell shape and ornamentation, it is then possible to use the present ecological requirements and zoogeography of living individuals to interpret the fossil assemblages. Variations in the specific composition of gastropods can be used to characterize past environments, and to reconstruct ecological and climatic parameters. Mollusk communities, including forest species, mainly represent temperate assemblages regardless of the region under consideration. Interstadial assemblages include species indicating cool and open conditions, whereas two main assemblages represent cold environments (Lozek, 1990; Rousseau, 1987, 2001; Rousseau and Puisségur, 1990). One group best characterizes steppe environments and is dominated by four species of *Pupilla*. The coldest and wettest conditions of a tundra-like environment are represented by the *Columella* group, which includes more species than the *Pupilla* group. While climatic variations can be interpreted from multivariate analysis of the mollusk assemblages, the compilation of the assemblages over a large area also yields other important information. Indeed, the impoverishment of the mollusk assemblages in the western European Upper Pleistocene loess sequence has been interpreted as a response to the coldest and wettest condition that prevailed in this area. In contrast, conditions notably less maritime (Atlantic) characterized central Europe during the last glacial period, where the assemblages were both more abundant and more diverse (Rousseau, 2001; Rousseau et al., 1990). Transfer functions of terrestrial mollusks, following the modern analog principle, have been developed for European loess sequences, which show similar temperature reconstructions to those computed from pollen counts (Rousseau, 1991). Other methods have also been developed using the present distribution of the species, as well as the ‘climate mutual range’ method originally developed for beetles (Moine et al., 2002). Finally, studies of Hungarian mollusk assemblages have used the ecological ranges of the observed species, applying a
method similar to the one developed for micromammal studies by Okhr (Sümegi and Hertelendi, 1998). Terrestrial mollusks have also been studied for their amino acid signatures, which show significant differences from one climatic cycle to another (Oches and McCoy, 1995).

Sedimentology and Grain Size

The particle size distribution of loess is often used to determine variations in the composition of the sediment. However, variation in the different grain size classes can also be used to determine the relative wind velocity at the time of particle transport. Comparison of the different grain size classes, from silt to coarse sands, is widely used in loess studies. Shi et al. (2003) interpreted an increase in the coarser grain size fractions at Dolni Vestionice (Czech Republic) as corresponding to the record of the major iceberg discharges in the North Atlantic, called Heinrich Events. However, another approach is to define a grain size index, which corresponds to a ratio of two main particle size classes. Higher values indicate stronger winds. Two main indices have been developed. Studying the loess sequence at Kesselt in Belgium, Vandenberghe et al. (1998) defined the 'U ratio' as the ratio between the two size classes 16–44 and 5.5–16 μm. Similarly, in studying other European loess sequences, Antoine et al. (2002) developed the IGR index ratio defined as the ratio between coarse loam (20–50 μm) and fine loam and clay (<20 μm), which is similar to the 'U ratio.' The IGR index can be used not only to reconstruct the wind dynamics but also as a new tool for the detailed correlation of different sequences within a limited area or along a transect. Results of studies using this method indicate that similar patterns can be traced from west to east right across Europe from northern France to Ukraine.

European Loess as a Record of the Response of the Continental Environments to North Atlantic Climatic Variability

Loess sedimentation in Europe appears to be rhythmic. Compared to Chinese loess, the European loess sequences (and especially those in western Europe) show a more discontinuous and contrasting record. These characteristics are linked to the influence of the North Atlantic Ocean that gives rise to
more humid environments (increase in soil development, and periglacial structures) and to high-frequency (millennial) variations in loess depositional rates.

According to new studies, the loess of Europe records rapid climatic events similar to those described in the Greenland GISP2 and GRIP ice cores (D/O), and in marine cores from the North Atlantic (Bond cycles). The latest results (Hatté et al., 2001a; Lang et al., 2003) obtained in studies of the Nussloch loess sequence (Germany) indicate good correspondence between European loess and North Atlantic climate variability (Antoine et al., 2001, 2002; Rousseau et al., 2002; Figures 11 and 12).

The cornerstone hypothesis of the study of the Nussloch sequence in the Rhine Valley is that loess sedimentation, if it has global significance, should be coherent with the dust record preserved in Greenland ice. High-resolution analyses of the Nussloch loess sequence (Germany) indicate good correspondence between European loess and North Atlantic climate variability (Antoine et al., 2001, 2002; Rousseau et al., 2002; Figures 11 and 12).

The cornerstone hypothesis of the study of the Nussloch sequence in the Rhine Valley is that loess sedimentation, if it has global significance, should be coherent with the dust record preserved in Greenland ice. High-resolution analyses of the Nussloch loess sequence can best be compared to the Greenland dust record because both provide a record of Northern Hemisphere eolian dynamics. Both GRIP and GISP2 dust records show alternating phases of high or very low dust concentrations in the atmosphere, the latter corresponding to the D/O interstadial (IS) events (IS 2–24 of Dansgaard et al. (1993), being warm climatic intervals during which very little dust reached Greenland).

Measurements of magnetic susceptibility and pedostratigraphy show clearly that the succession of loess and paleosols at Nussloch matches the general stratigraphy of the last climatic cycle in western Europe. This succession, dated by AMS radiocarbon and OSL, has been correlated with the GRIP dust concentration for the last climatic cycle (Figure 11). Numerous events in the Greenland record corresponding to D/O events also appear to be recorded in the loess sequence (Figure 10).

At Nussloch, the variations of the IGR index through time appear similar to the fluctuations in Greenland dust fluctuation during the 32–19 ka interval, where the temporal resolution is best (Figure 11). Furthermore, similar and synchronous variations have been determined in other western European sequences (Achenheim, Mainz-Weisenau) within the EOLE project (CNRS-ECLIPSE program), providing support for the global value of the IGR grain size index used. Thus, it appears that the western European loess sequences faithfully record D/O events, with the Nussloch section rightfully considered as a key reference locality (Antoine et al., 2002; Rousseau et al., 2002). However, this record of the D/O events is a function of the strength and duration of interstadial warming, as is also expressed in the δ^{18}O values in Greenland ice cores. Work within the EOLE project indicates that the warmest and longest interstadials are marked by well-developed paleosols (Bw horizon at the base of the thick sequence). In contrast, if the duration of the period of low dust concentration is short, then the interstadial will be marked in the stratigraphy by a gley paleosol, the signature of which will depend on the strength of the corresponding warming.
Variations in organic matter δ13C support this interpretation, having been mainly linked to climatic fluctuations (availability of water and atmospheric CO2 concentration) as recorded by the vegetation (Hatte et al., 1998, 2001b). Warming during D/O events is also marked by larger terrestrial mollusk populations, as indicated by a greater abundance of counted individuals. Although the loess record and its correlation with Greenland is well documented at Nussloch, similar patterns, especially in the stratigraphy and also in the grain size variations, have been described all along the loess belt from northern France eastward to the Czech Republic and Ukraine, demonstrating again that European loess has faithfully recorded the climatic variations that occurred in the North Atlantic.

Summary

The loess of Europe is mostly an eolian sediment, generally presenting elements of both local and global origin. It is indicative of periglacial environmental conditions, which made the fine material available to wind transport, originating mainly from sandurs or dried-out braided rivers, moraines, or dried-out shelves. Considering their distribution, thickness, and complexity around the margins of the Quaternary ice sheets in the Northern Hemisphere, loess sequences can be considered as one of the best records of global environmental changes on the continents.

European loess sequences have been intensively studied for many decades, but increasingly higher stratigraphic resolution and availability of a growing range of climate proxy indicators have resulted in some notable advances in recent years. Climatic variability has been analyzed at high resolution based on different proxies. Sequences studied have revealed that the main loess deposition started at about 70 ka and ended around 16–15 ka. For example, the magnetic susceptibility record of the Achenheim loess sequence (France) has been correlated with the Upper Pleistocene (70–15 ka) Greenland dust content. Other results have shown that abrupt changes, named markers, are also recorded in the soil complexes. Markers are generally finer grained than most loess, but mineral content does not differ significantly. These markers correspond to long-distance wind-transport episodes, recording clearly visible events. The results from the study of the Nussloch sequence (Rhine Valley) show that the loess sedimentation, in sensu
stricto, is rhythmic, its fluctuations corresponding with rapid events of both marine and glacial type.

Analysis of particle size variation is a key method in loess research. Preliminary comparison of the grain size record from the Nussloch sequence, in the Rhine Valley, and the dust content from the GRIP ice core in Greenland shows high-frequency peaks that correlate with dust content in ~1.5-ka cycles, the main ones being associated with the North Atlantic Heinrich Events. This supports the hypothesis that European loess sequences contain a record of rapid climatic changes. Recently, work on δ¹³C variations in organic matter from European loess sequences has shown that δ¹³C parallels the GISP2 δ¹⁸O variations, and is interpreted as recording the D/O events. Variation in this index was interpreted as recording the response of the local vegetation to climate changes. However, because there were no changes in the type of photosynthetic pathway, this index is also considered to be a proxy for local annual precipitation. In mid-latitudes, therefore, the dust intervals appear to correspond to periods when, although vegetation cover was reduced, it was adequate to provide sufficient organic matter from which to abstract a signal of biological activity (i.e., mollusks). The Greenland dust record also shows that isotope stages 2 and 4 were dustier than stage 3 and that important variations occurred in the dust content of the atmosphere during the same interval. Some of the oscillations were contemporaneous with the massive iceberg discharges named Heinrich Events.

References

